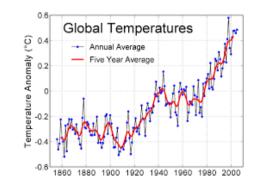
ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 DEDEM DO ENVERNIE USBOA

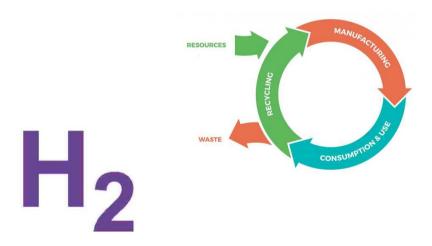
Hydrogen and Strategic Energy Reserve

Paulo Brito

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS LISBOA

ecco


Sumary


- 1. Overview
- 2. Waste-to-gas
- 3. Power-to-gas
- 4. Conclusions

|--|--|

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 detembro 2019 ORDEM DOS ENCEMPEROS LISBOA

Goals

_

Instituto Politécnico Portalegre University of Applied Science

AP2H2.

- 1. Reduction of carbon emissions
- 2. Wastes valorization
- 3. Energy storage

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS, LISBOA

New fuels

- Non-food biomass
- Cellulose and vegetable fibers
- Microalgae
- Waste

• (

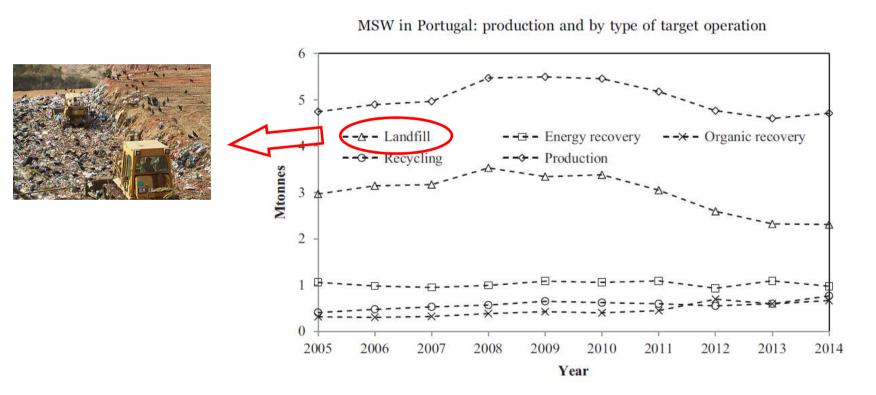
ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 PORTEM DE ENCEMPERTO 2019

Types of wastes/effluents

- Municipal Solid Wastes
- Demolition and Construction wastes
- Forest residues
- Industrial and Agro industrial effluents and residues
- Wastewater treatment plants and Sewage Sludge

()				
Municipal waste	Agricultural Waste	Forest Waste	Animal Waste	Agroindustry waste
food waste,	crop residues,	Nut shells,	fat,	wastewaters and waste
waste oil,	green waste,	sawdust,	tallow,	from:
sewage,	straws,	splinter,	lard,	cork,
plastics,	leaves,	fibers,	intestines,	wineries,
paper and cardboard,	stalks	dead trees,	blood,	olive oil mill,
textiles and leather,	stovers,	leaves,	processing waste,	coffee torrefaction,
Construction and Demolition Waste.	prunings,	branches,	manure.	paper pulp industry.
	wood chips.	etc.		

1. Overview


3. Power-to-gas

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 detembro 2019 ORDEM DOS ENDERMETROS. USBOA

Biomass - Waste

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019

WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS. LISBOA

Bio resource	Potential GWh/year
Animal manure	1,088
Forest residues	11,578
Agriculture residues	4,528
Wastewater treatment plants	207
Municipal solid wastes	1,600
Energy crops	8,378
Total	27,379

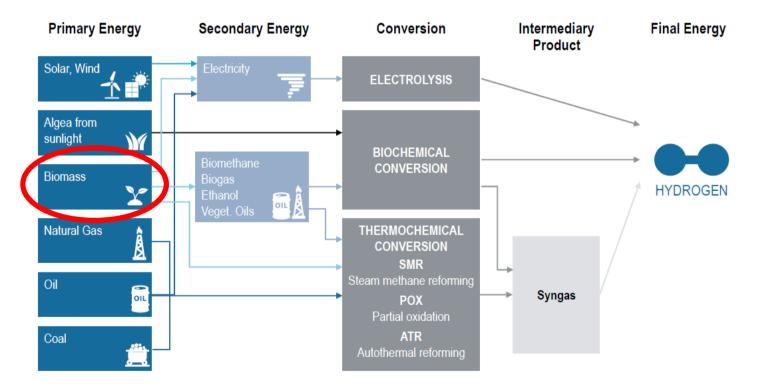
10% of the energy demand

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS, LISBOA

1. Overview

2. Waste-to-gas

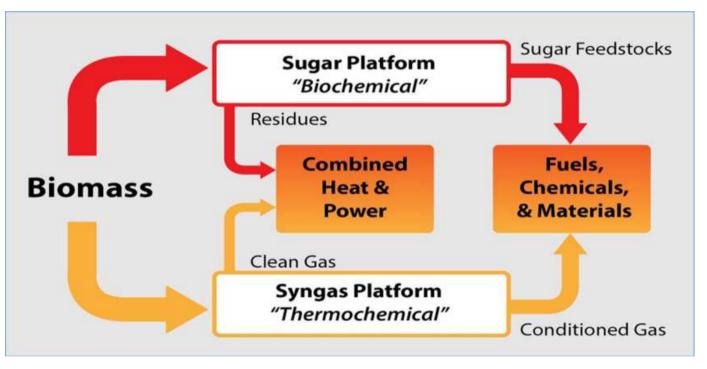
3. Power-to-


4. Conclusion

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENCEMHEIROS. LISBOA

Den Instituto Portalegre University of Appled Sciences

Hydrogen production


	2. Waste-to-gas		
--	-----------------	--	--

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENCEMPEIROS, LISBOA

Biorefinery

2. Waste-to-gas	

Instituto Politécnico Portalegre

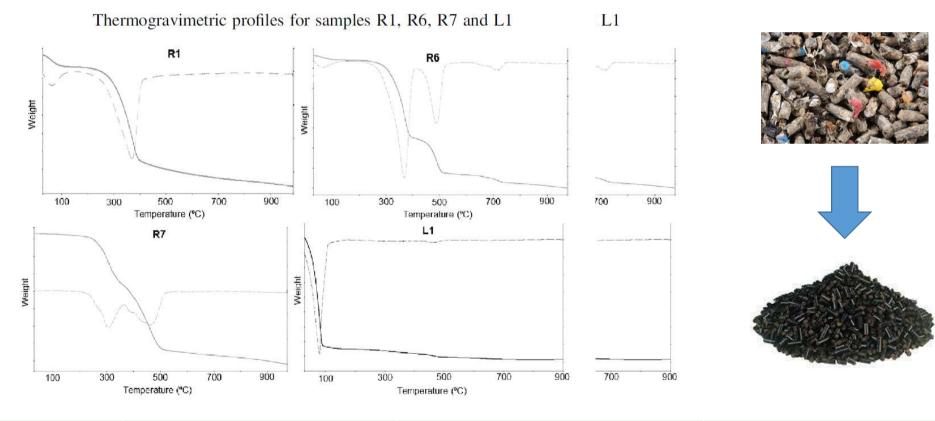
University of Applied Sciences

AP2H2•

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS, LISBOA

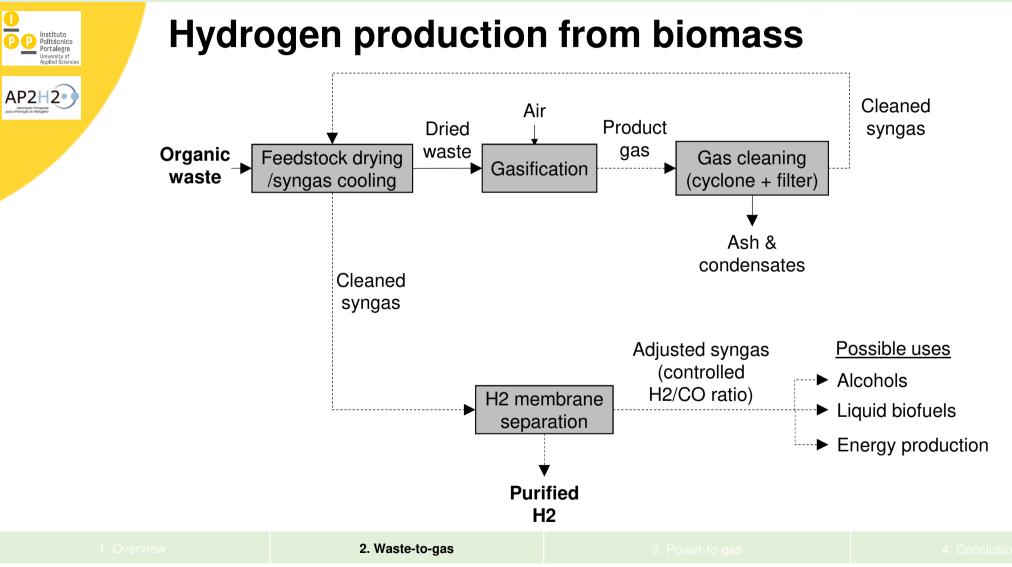
Thermochemical processes

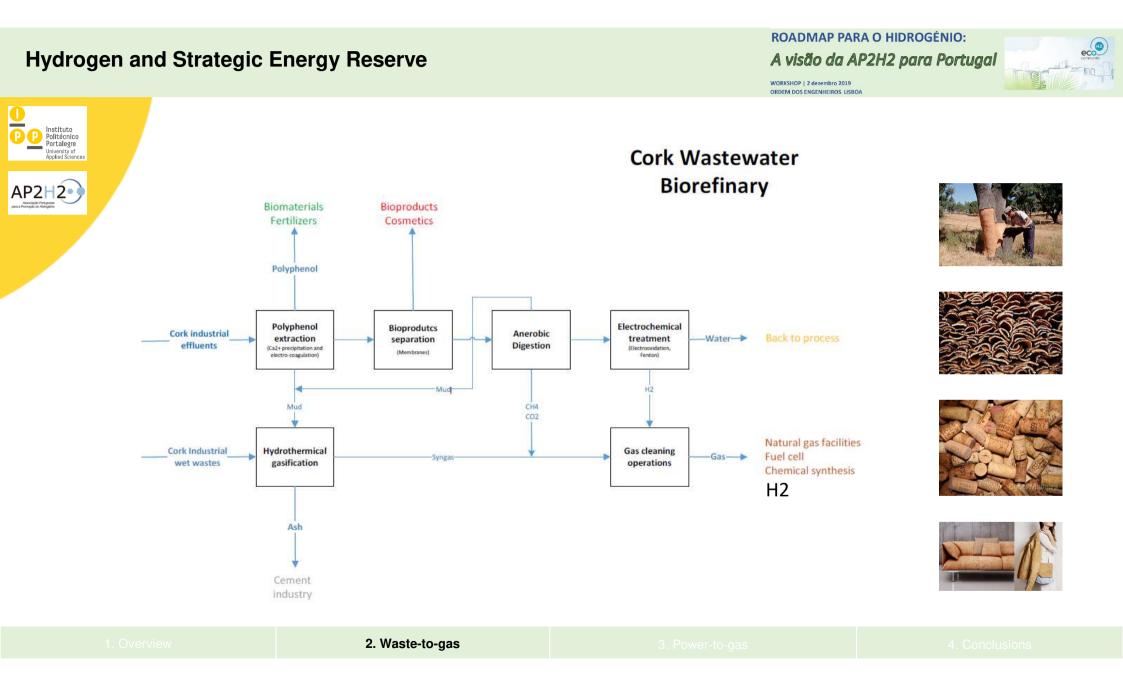

Technology	Benefits	Limitation	5	Products	Applications	Technological Readiness Level
Combustion/ Incineration	Reduction of mass (70%) and volume (80%), Fast and simple process, energy recovery of waste with good LHV		l cost, public opinion objection, oxic slag, air pollution, dioxin	Combustion in boilers and furnaces	Heating, Electricity and transportation	TRL-9
Gasification	Wide range of applications and feedstocks, High conversion efficiency	low flexibil	al cost, high sensibility processes, ity, risk of mechanical failure, e production	Syngas rich in hydrogen and carbon monoxide	Heating, Electricity, transportation, fuels and high value chemicals	TRL-7
Explosive decompression	Transformation of lignite, solubilization of hemicellulose	Productior degradatio	of toxic compounds, partial n	Sugars, digestible products	Heating, Electricity, transportation, fuels and high value chemicals	TRL-4
Pyrolysis	High yield, reduced syngas treatment, reduction of waste volume (90%)		al costs, high maintenance and costs, high viscosity of the bils	Bio-Oils, BioChar, Syngas	Additives, high value chemicals, transportation, heating and electricty	TRL-6
Hydrothermal Liquefaction	Higher LHV Bio-Oil and low moisture content		rsion efficiency (20-60%), higher quipment and higher capital cost	Heavy oil, intermediate value chemicals	Additives, high value chemicals, transportation, heating and electricty	TRL-4
Torrefaction	Homegeneous and stable products, easy pelletizing, high LHV, hydrophobic	Low energ	y Density, high ash quantity	Torrefied biomass	Heating, electricity	TRL- 8
	2. Waste-to-gas					

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 detembro 2019 ORDEM DOS ENGENHEROS LISBOA

Instituto PPP Protection Portalegre University of Appled Sciences

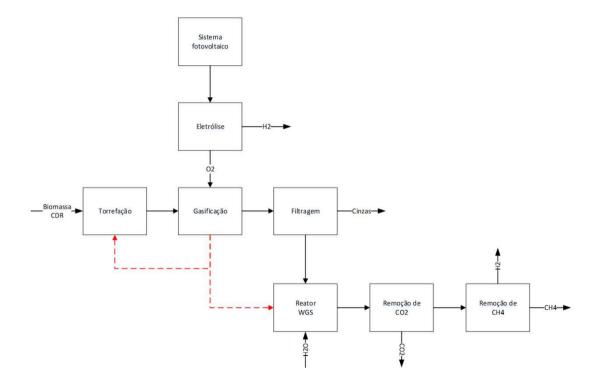
Torrefaction



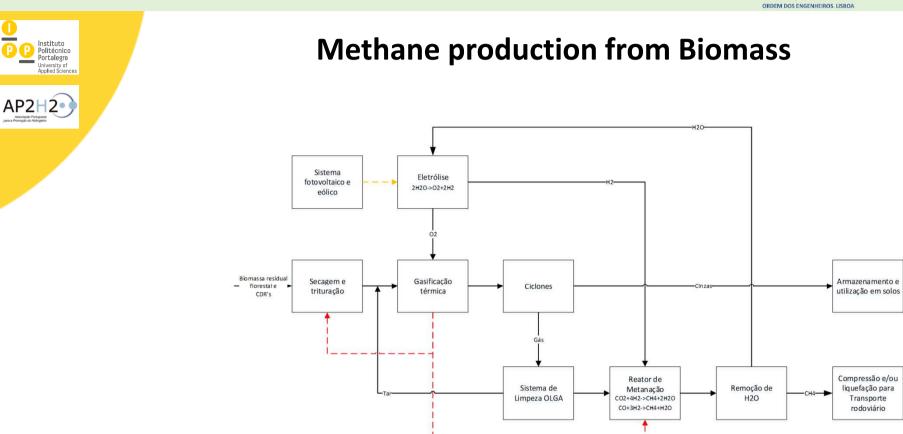

	2. Waste-to-gas		
--	-----------------	--	--

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS, LISBOA



ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 decembro 2019 ORDEM DOS ENGENHEIROS, LISBOA

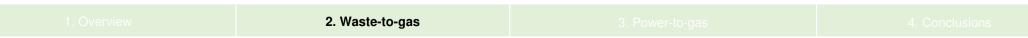

Hydrogen production from Biomass

_

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019

2. Waste-to-gas	

000


Instituto Politécnico Portalegre University of Applied Sciences

AP2H2.

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS. LISBOA

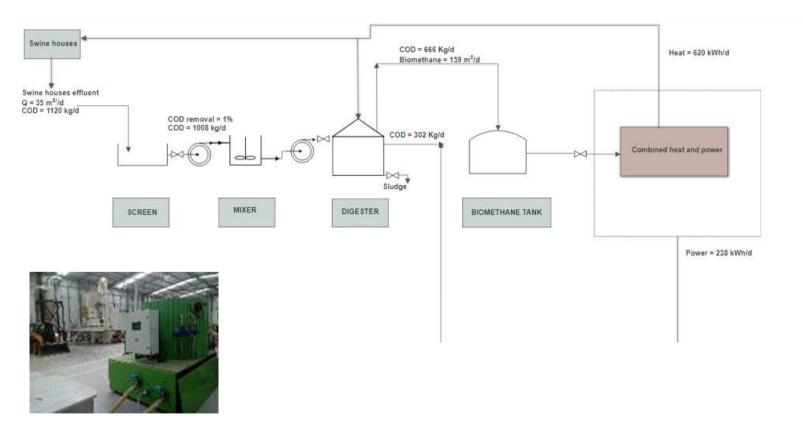
Costs \$14 000,00 \$12 000,00 \$10 000,00 Cost (\$/kWp) \$8 000,00 \$6 000,00 \$4 000,00 -1-\$2 000,00 <u>_</u> -Ь Anaeron Anaeronic Diestion G1 Direct Combinen Both Stokes Bollet -Fixed Bed Gasher G Fuddeed Gastler G Fived Bed Gastier ICE Plasma Mc Gastication Stoker CHP Land HI Castle Compusitor 040 Waste to Energy Technologies

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS. LISBOA

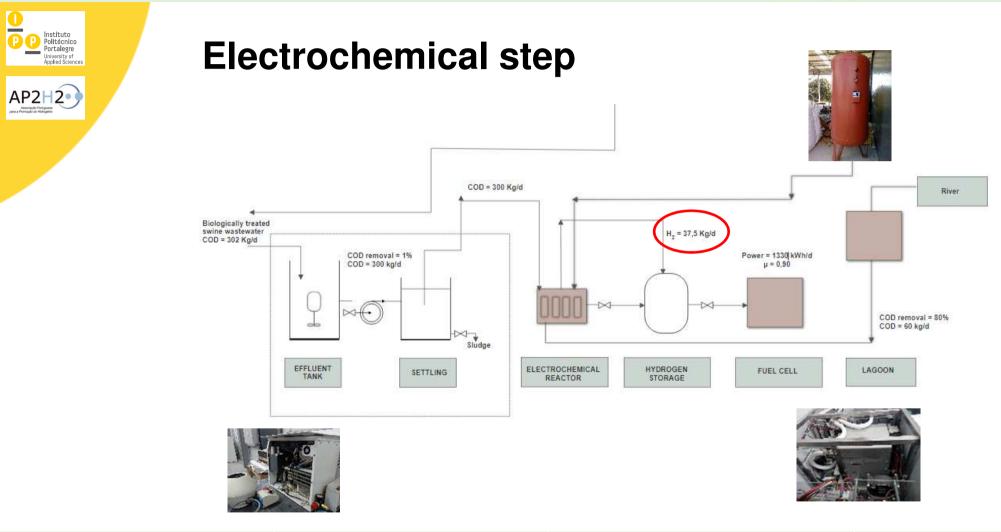
Biochemical Process

Technology	Benefits	Limitations	Products	Appli	cations	Technological Readiness Level
Anaerobic Digestion	Solid waste reduction, high moisture content feedstock, methane and carbon dioxide rich biogas, low cost organic fertilizer as by-product	Need to treat and clean the biogas, unstable system, large facilities are unattractive	Biogas, bio digestate		ng, Electricity, transportation, and high value chemicals	TRL-9
Fermentation	Does not contribute to increase of greenhouse gas emissions	Limited to sugar, starch or cellulose rich feedstocks	Liquids and CO ₂		ives, high value chemicals, portation, heating and icty	TRL-9
Photo-Fermentation	the photosynthetic bacteria are capable of using a range of the electromagnetic spectrum	Low-efficiency, inhibited in the presence of oxigen	Hydrogen, Carbon Dioxide, organic acids		ives, high value chemicals, portation, heating and icty	TRL-4
Dark Fermentation	capable of converting a wide range of wastes, scalable technology , independent of light	Low theorical limit, imature technology	Hydrogen, Acetic Acid		ives, high value chemicals, portation, heating and icty	TRI-3
Enzyme Treatment	Low power consumption, low by products production, does not require toxic catalysts, can result in a reduced solvent	High cost of the enzimes, slow reactions, necessity of high purity, limited in temperature and ph range	Ethanol, amino acids	-	value chemicals, portation, heating and icty	TRL-8
Microbial electrolysis	Hydrogen Production, low energy consumption, effluent degradation	High internal resistance, high capital cost, production greatly affected by substrate composition	Hydrogen, Methane, Acetate, formic acid	chemi	ewater treatment, high value icals, transportation, heating lectricty	TRL-4
	2. Waste-to-gas					


ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019

ORDEM DOS ENGENHEIROS LISBOA

Biological step

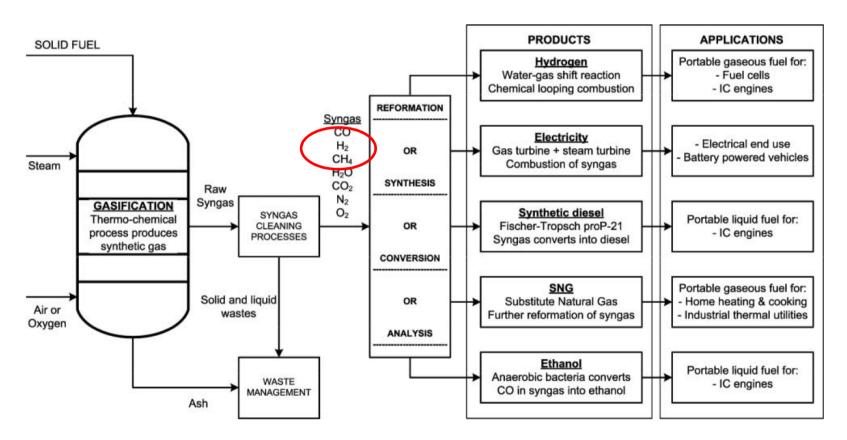

2. Waste-to-gas	

П

AP2H 2.

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS. LISBOA

2. Waste-to-gas	
Ū	

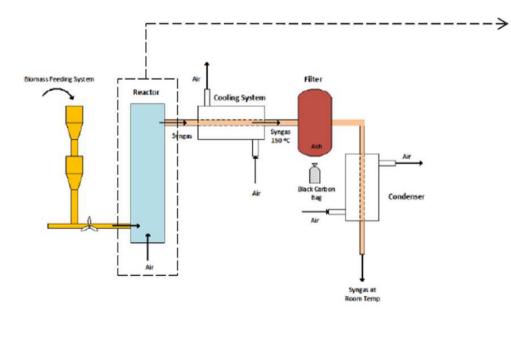

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

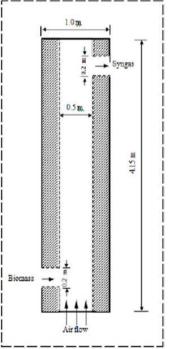
WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS LISBO/

PP P Instituto Portalegre University of Appled Sciences

Thermal gasification

2. Waste-to-gas


3. Power-to-


ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENCENHEIROS LISBOA

Pilot gasification plant Bubble fluidized rector

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS- LISBOA

ēe Instituto Politécnico Portalegre University of Applied Sciences AP2H2•

Ω

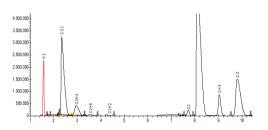
Properties of some biomasses and residues

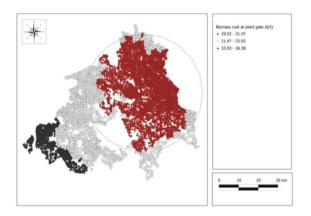
Parameter	Unit		Biomass										
		Pine	Acacia	Hemp	Rice husk	Peach pit	Dried timber	Pine bark	Olive stone	Olive press-cake	Meat and bone	Tires	Plastics
Moisture content	wt% ar*	8.6	7.8	7.9	9.8	13.3	0	16.7	9.4	8.9	8.8	0.8	0.2
Volatile matter	wt% ar	80.6	75.7	71.9	59.9	66.4	80	57.6	57.8	70.97	50	64.5	78.3
Fixed carbon	wt% ar	8.2	12.5	4.2	14.7	19.3	19.4	24.5	19.7	19.48	8.3	29.6	20.9
Ash	wt% ar	2.6	4.0	16.0	15.6	1	0.6	1.2	13.1	0.65	32.9	5.1	0.6
Lower heating value (LHV)	MJ/kg	17.1	17.6	23.1	13.88	16.18	16.31	16.42	16.36	20.3	15.2	38.6	31.6
Carbon	wt% ar	51.6	44.2	45.7	38.8	45.49	52.0	46.24	43.22	53.87	30,6	75.5	69.2
Hydrogen	wt% ar	6.0	5.4	7.1	4.6	6.26	6.3	5.92	5.56	8.8	5.2	7.1	7.4
Nitrogen	wt% ar	2.8	1.4	3.5	1.3	0.73	0.4	0.19	1.86	2.03	8.1	0	0
Oxygen	wt% ar	22.8	33.1	15.2	29.6	33.22	40.5	29.75	26.86	26.51	52.2	11.8	23.4

*ar-as received basis.

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS-LISBOA


Experimental conditions and syngas analyses.


000

Instituto Politécnico Portalegre University of Applied Sciences

AP2H2

815				offee hu	JIX	V 1.	nes prun	mg
015	815	790	815	790	790	790	790	815
63	74	63	28	28	41	25	55	55
94	98	98	75	72	80	52	40	40
1,11	0,99	1,16	2,63	2,52	1,96	2,96	0,58	0,58
106	94	100	106	88	116	107	108	102
8,2	8,4	7,6	12,4	7,6	7,5	5,1	10,4	12,7
18,6	18,0	17,9	11,4	11,1	10,6	8,3	11,7	14,1
4,6	4,4	4,4	1,6	2,4	2,4	1,1	2,4	2,3
16,7	17,1	17,1	18,7	17,0	18,5	16,5	20,1	17,9
48,0	48,2	49,2	52,3	54,2	55,2	56,4	51,2	49,1
438	323	399	711	572	506	855	328	375
14	11	12	55	28	25	38	21	24
62	45	56	56	71	65	63	39	36
620	483	602	1836	1380	1390	2675	888	751
5,16	5,02	4,93	3,34	3,20	3,07	1,99	3,46	4,02
1,13	1,09	1,07	0,73	0,65	0,63	0,37	0,73	0,89
	94 1,11 106 8,2 18,6 4,6 16,7 48,0 438 14 62 620 5,16	94 98 1,11 0,99 106 94 8,2 8,4 18,6 18,0 4,6 4,4 16,7 17,1 48,0 48,2 438 323 14 11 62 45 620 483 5,16 5,02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	94 98 98 75 72 80 52 1,11 0,99 1,16 2,63 2,52 1,96 2,96 106 94 100 106 88 116 107 $8,2$ $8,4$ 7,6 12,4 7,6 7,5 5,1 $18,6$ $18,0$ 17,9 11,4 11,1 10,6 $8,3$ $4,6$ $4,4$ $4,4$ 1,6 $2,4$ $2,4$ 1,1 $16,7$ 17,1 17,1 18,7 17,0 18,5 16,5 $48,0$ $48,2$ $49,2$ $52,3$ $54,2$ $55,2$ $56,4$ 438 323 399 711 572 506 855 14 11 12 55 28 25 38 62 45 56 56 71 65 63 620 483 602 1836 1380	94 98 98 75 72 80 52 40 1,11 0,99 1,16 2,63 2,52 1,96 2,96 0,58 106 94 100 106 88 116 107 108 $8,2$ $8,4$ 7,6 12,4 7,6 7,5 5,1 10,4 $18,6$ $18,0$ $17,9$ $11,4$ $11,1$ $10,6$ $8,3$ $11,7$ $4,6$ $4,4$ $4,4$ $1,6$ $2,4$ $2,4$ $1,1$ $2,4$ $16,7$ $17,1$ $17,9$ $11,4$ $11,1$ $10,6$ $8,3$ $11,7$ $4,6$ $4,4$ $4,4$ $1,6$ $2,4$ $2,4$ $1,1$ $2,4$ $16,7$ $17,1$ $17,1$ $18,7$ $17,0$ $18,5$ $16,5$ $20,1$ $48,0$ $48,2$ $49,2$ $52,3$ $54,2$ $55,2$ $56,4$ $51,2$ 41

Cold Gasification Efficiency

0,37

0,60

0,47

0,42

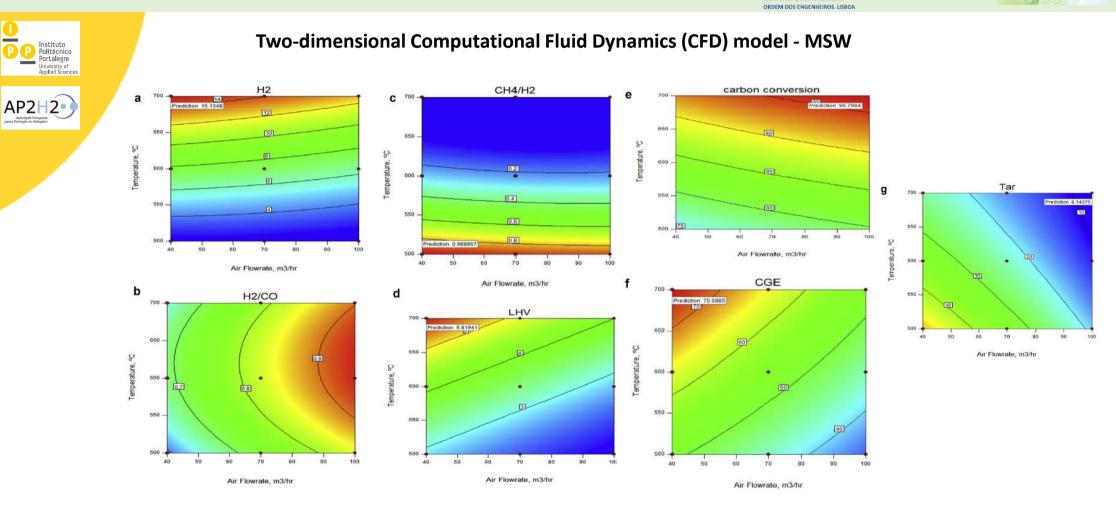
0,95

0,4\5

0,49

1. Overview

2. Waste-to-gas


0,41

0,30

3. Power-to-ga

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019

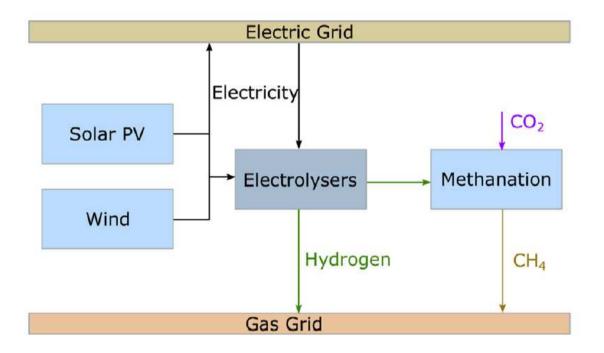
2. Waste-to-gas

3. Power-to-g

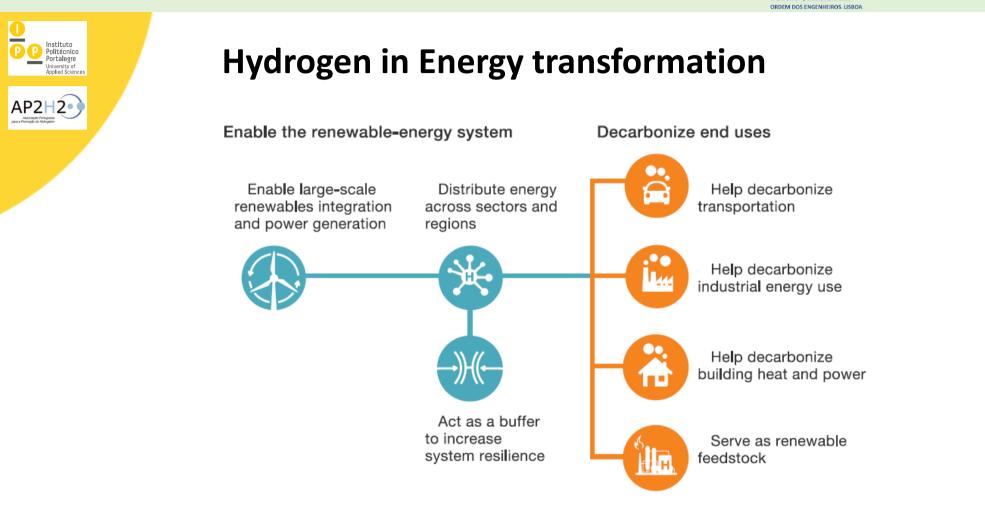
ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS LISBOA

Economical Evaluation – CDW + Forest residues

System Para	imeters
Type of gasifier	Fixed bed
Operating yield (%)	16 - 18
Operating time (h)	12
Days of the month	21
Days of the year	252
Feedsto	ock
PCEC	2
Amount (ton/year)	226,8
Price for landfill (€/ton)	9,9
Annual readjustment of landfill	1,12
Forestry m	aterial
Amount (ton/year)	2041,2
Price of the chip (€/ton)	25
Economic pai	rameters
Investment (€/kW)	2000
Price of electricity produced (€/kWh)	0,2
Price of electricity consumed (€/kWh)	0,29
Operating costs (% investment)	1%
Life time (year)	30
	2. Waste-to-gas


Parameter	Test 90% pine + 10% PCEC
PCI (MJ/m³)	5,2
Volume produced (m³/h)	21,93
Biomass consumption (kg/h)	6
Energy contained in biomass (kWth/ kg)	5,28
Energy produced in one year (kWe.month)	179606,7
Current costs	
Deposition in landfill (€ton/year)	2245,32
Energy spent per month (kWh)	39884,5
Expenses with the installation of a gasification p	lant
Investiment	2565810
Maintenance costs (€/year)	25658,1
Costs with forest biomass (€/year)	51030
Income	
Non-referral to landfill (€/year)	2245,32
Electric power saved (€/year)	138791,1
Sale of residual energy (€/year)	35921,34
Time of return (year)	8

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 detembro 2019 ORDEM DOS ENGENHEIROS LISBOA


Waste-to-gas (P2G)

	3. Power-to-gas	

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP 1 2 desembro 2019

|--|--|--|--|--|

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019

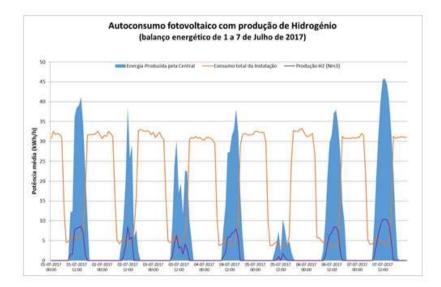
ORDEM DOS ENGENHEIROS LISBOA

Armazenamento de energia

Cenário comparativo entre as formas de armazenamento de energia

xo/Elevado < Se Médio < Se Elevado Segunda Baixo Segunda ixo/Médio Mi	egundos egundos dos/Minutos dos/Minutos Minutos dos/Minutos	Vida (Baixa (2-10 Média (15-2 Média (15-2 Elevada (40 Média (15-2 Média (15-2	0 anos) 20 anos) 20 anos) -60 anos) 20 anos)		Energy Storage			
Médio < Se Elevado Segundo Baixo Segundo ixo/Médio Mi	egundos dos/Minutos dos/Minutos Minutos	Média (15-2 Média (15-2 Elevada (40- Média (15-2	20 anos) 20 anos) -60 anos) 20 anos)		Energy Storage			
Elevado Segundo Baixo Segundo ixo/Médio Mi	dos/Minutos dos/Minutos 1inutos	Média (15-2 Elevada (40- Média (15-2	20 anos) -60 anos) 20 anos)		Energy Storage			
Baixo Segundo ixo/Médio Mi	dos/Minutos 1inutos	Elevada (40 Média (15-2	-60 anos) 20 anos)		Energy Storage			
ixo/Médio Mi	1inutos	Média (15-2	20 anos)		Energy Storage			
					Energy Storage			
Médio Segundo	dos/Minutos	Média (15-2	20 anos)		Energy Storage			
S	Storage S Flywheel • Pumped Hydro •	Storage • Hydrogen • Biofuel	Electrochemical Energy Storage • Supercapacitor • Batteries	Magnetic Energy S	torage	Storage Ceramics Concrete	Latent Heat Storage • Phase Change Materials (PCM)	Thermoche Heat Storag
		Storage Flywheel Pumped Hydro	Storage Storage • Flywheel • Hydrogen • Pumped Hydro • Gravity • Biofuel • Compressed Air	Storage Storage Energy Storage • Flywheel • Hydrogen • Supercapacitor • Pumped Hydro • Biofuel • Batteries • Gravity • Biodiesel • Compressed Air	Storage Storage Energy Storage Magnetic Energy S • Flywheel • Hydrogen • Supercapacitor Storage • • Pumped Hydro • Biofuel • Batteries • • Gravity • Biodiesel • Batteries	Storage Storage Energy Storage Magnetic Energy Storage • Flywheel • Hydrogen • Supercapacitor Storage • Liquid Air • Pumped Hydro • Biofuel • Batteries • Energy Storage • Gravity • Biodiesel • Biodiesel • Compressed Air • Compressed Air	Storage Storage Energy Storage Magnetic Energy Storage Storage • Flywheel • Hydrogen • Supercapacitor Storage • Liquid Air • Ceramics • Pumped Hydro • Biofuel • Batteries • Batteries • Concrete • Gravity • Biodiesel • Biodiesel • Chilled water	Storage Storage Energy Storage Magnetic Energy Storage Storage Storage Phase Change • Flywheel • Hydrogen • Supercapacitor Storage • Liquid Air • Ceramics Materials • Pumped Hydro • Biofuel • Batteries • Batteries • Energy Storage • Liquid Air • Ceramics Materials • Gravity • Biodiesel • Biodiesel • Compressed Air • Chilled water • Chilled water

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal



WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS- LISBOA

Energia [kWb/ano]		Rácios		Produção de H2			
Consumo total da Instalação	153.141	Energia Produzida/ Energia Consumida	59%	Excedente de Energia(<mark>kWh</mark>)	67.156		
Energia produzida pela central	90.642	Energia Autoconsumo/ Energia Produzida	25,9%	Eficiência Eletrólise(%)	25%		
Energia para autoconsumo	23.487	Excedente/Energia Produzida	74,1%	Potencial de Produção H2 (Nm3)	16.789		

Energia Térmica do H2: 181,32 GJ

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS. LISBOA

Avaliação económica

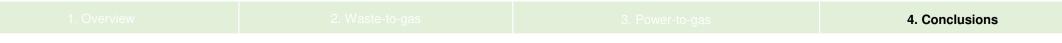
Tipo de célula	PE	EM		Alcalina		
Ano	20	20	20	20	2030	2020
Potência	36	360	36	360	36	36
Caso de Estudo - A						
VAL (euros)	-5 499	326 586	49 354	833 682	12 871	57 444
PRI (anos)	>15	6	6	3	9	5
TIR (%)	1,2%	18,3%	16,4%	38,2%	8,6%	20,9%
Caso de Estudo - B			-		-	-
VAL (euros)	-33 913	6 570	-4 040	270 298	-11 869	6 171
PRI (anos)	>15	15	>15	8	>15	13
TIR (%)	-6,8%	3,3%	2,0%	13,7%	-1,5%	4,7%
Caso de Estudo - C						
VAL (euros)	-4 649	163 786	23 962	427 686	5 462	28 436
PRI (anos)	>15	6	7	3	9	5
TIR (%)	0,2%	17,2%	15,0%	36,0%	7,4%	19,4%
Caso de Estudo – D						
VAL (euros)	-6 854	-5 466	-1 974	37 190	-2 833	-103
PRI (anos)	>15	>15	>15	9	>15	>15
TIR (%)	-8,3%	1,5%	0,3%	11,3%	-3,1%	2,8%
Caso de Estudo – E						
VAL (euros)	-38 598	-58 991	-16 563	130 671	-17 753	-6 825
PRI (anos)	>15	>15	>15	10	>15	>15
TIR (%)	-9,8%	-0,2%	-1,6%	8,8%	-4,7%	0,9%

1. Overview

2. Waste-to-g

3. Power-to-gas

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019 ORDEM DOS ENGENHEIROS LISBOA



Conclusion

The Waste Biorefinary with Thermal Gasification rout is a good alternative for descarbonization and waste valorization by permitting:

- Production of alternative sustainable fuels and hydrogen;
- The promotion of waste recovery technologies;
- Alternative technologies for waste combustion/Incineration that are more Green.

Waste and Renewables are an National Energy Strategic Reserve!

ō

Instituto Politécnico Portalegre University of Applied Sciences

AP2H2.

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 dezembro 2019

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal

ORDEM DOS ENGENHEIROS. LISBOA

Technology-based incubator

Pilot units

ROADMAP PARA O HIDROGÉNIO: A visão da AP2H2 para Portugal WORKSHOP | 2 decembro 2019 ORDEM DOS ENGENHEIROS, LISBOA

Thank you for your attention

pbrito@ipportalegre.pt